math درباره وبلاگ به وبلاگ من خوش آمدید آرشيو وبلاگ نويسندگان یک شنبه 26 آبان 1392برچسب:, :: 19:31 :: نويسنده : mehrnaz
1.a)let f,g:X→Sⁿ be smooth maps s.t.ǁf(x)-g(x)ǁ<2 for any x in X.show that f is smoothly homotopic to g. b)let m<p & show that any 2 mapping Mᵐ→Sᵖ are homotopic. c)let f:Sⁿ→Sⁿ be given with deg(f)=2k+1.show that there exists x in Sⁿ s.t. f(-x)=-f(x). 2.a)define Guass map for a manifold Xᵏ⊆Rᵏ. b)state & prove Hopf lemma. 3.give an example of 2 suitable manifolds M,N s.t.: a)deg:C∞(M,N) →Z is onto(Z is set of all intigers) b)deg:C∞(M,N)→{1,-1} is onto; c)compute the degree of f:lR-{0} →lR+ define by f(x)=l x l. Is this map smoothly homotopic to the constant map? Justify your answer. d)let n be even.Is it possible to use deg2 to show that the anti podal map Sⁿ→Sⁿ is not homotopic to the identity? 4.state the homogeneity lemma & prove it for Rᵏ. 5.a)let Mᵐ⊆Rᵏbe a compact manifold without boundary & v:M→Rᵏ a nonzero vector field.Is it possible to find a k-dim manifold N s.t. M⊆N &N admits a nonzero vector field w:N→Rᵏ s.t. w(M)=v? b)let M=Sⁿ when n=1 & v:M→Rᵏ ( k=2) be given by v(x,y)=(y,-x). find an example for N,M as part (a).
نظرات شما عزیزان: پيوندها
تبادل لینک
هوشمند
|
|||||||||||||||||
|